
A mathematical construction of  n-dimensional quasicrystals starting from  G-clusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 4283

(http://iopscience.iop.org/0305-4470/30/12/016)

Download details:

IP Address: 171.66.16.72

The article was downloaded on 02/06/2010 at 04:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 4283–4291. Printed in the UK PII: S0305-4470(97)78854-1

A mathematical construction of n-dimensional
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Abstract. We present a mathematical construction ofn-dimensional quasicrystals by starting
from its symmetry group, an arbitrary finite group, and from its local structure described by using
a finite union of orbits ofG, called aG-cluster: namely, we construct the periodization space,
the G-invariant lattice, the decomposition into the physical and internal space in a canonical
way. Using a strip-and-projection method we obtain quasiperiodic patterns corresponding to
various generic local structures.

1. Introduction

Many of the actual models of quasicrystals are obtained by using either periodic structures
in higher dimensions or packed/interpenetrating atomic clusters in physical space [1]. Here,
following some terminology used in the literature, we call a quasicrystal a crystallographic
object, a crystal, which is not periodic; see Senechal [2] for more details. In the first case,
they are constructedglobally from a finite group, sayG, while, in the second case, the
atomic clusters (assumed always finite) are invariant under the action of groupsG′ linked
to G (as subgroups or supergroups), and their centres are arranged in a suitable way to
form quasiperiodic patterns (quasiperiodic tilings) [3, 4]. This second approach islocal and
depends upon the (assumed finite) collection of different types of atomic clusters possible.
Indeed, the Fourier transform of a quasicrystal is supported by a countable dense set in
reciprocal space, it exhibits inflation laws and is invariant under the action of a non-trivial
finite group of transformations, generally forbidden for ‘periodic’ crystals. This latter group
of transformations acting in reciprocal space is used in the aboveglobal construction as
‘G’, or instead ofG, a subgroup, or a supergroup is taken to lower or increase the global
symmetry of the corresponding quasicrystal model in real space [5].

By local, we mean the following situation in dimensionn by analogy with what happens
in dimension two and three for the existing quasicrystal models: in 2D and 3D, each
cluster—that is the finite collection of points which constitutes the centres of the atoms—
can be viewed as a compact cluster of atoms, radiallytruncatedto a few shells. This sticks
to the approach of crystallographers making models on the computer or by hand from small
compact entities, where, by construction, the first central shells of atoms around the centres
are the most relevant. The termtruncatedis justified by the fact that the extent of the point
symmetry around the centre of the cluster is not necessarily limited to the atoms used in the
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clusters, grouped by orbits, but that other shells of atoms—also constituting orbits—could
be considered in the model outside the clusters which could also be used. In this respect, the
truncation may appear sometimes arbitrary and several clusters—viewed as subclusters of
the others—can provide the same global quasicrystal model. However, the formalism below
is entirely general and gets rid of such considerations by keeping the notion of cluster, that
is the unions sequences of orbits, at a level of full mathematical generality.

An algebraic theory for modelling quasicrystals inEn = (Rn, 〈., .〉) the usual Euclidean
n-dimensional space, controlledglobally by an arbitrary finite group, sayG, was presented
at ICQ5 by Pleasants [6]. The method consists in representingG over a real number field
K, which always exists, of degreed overQ, and uses the canonical (r > 1) real and (2s)
complex embeddings ofK to sendG-invariantOK -modules ontoZ-lattices inRnd , with
d = r + s. The decompositionRnd = En⊕W , whereW = Rn(r−1)⊕Cns , the fact that PV-
numbersλ exist inK, ensures the possibility of constructing quasicrystals inEn, exhibiting
inflation rules associated withλ, using a suitable window inW . In this procedure, the
choice ofK is a consequence of the rationality of the characters of the groupG [7, 8]. The
‘algebraic’ dimension of periodization is therefore canonical, and is equal tond.

In the present paper, we would like to give a different mathematical setting, by
considering a generic (finite)G-cluster inEn, fixed once for all, from which we intend
to construct a quasicrystal. LetG ⊂ Aut(En) be a non-trivial finite group of orthogonal
transformations, such that the representation ofG in En is R-irreducible. Letl > 1, and let
v1, v2, . . ., vl be distinct non-zero elements inEn.

By definition, aG-cluster [9, 10], denoted byC = G{v1, v2, . . ., vl}, is the finite union
of orbits ∪lj=1Gvj . This G-cluster can be viewed as an averageG-cluster [10] over all
possible imperfectG-clusters existing in the quasicrystal, that we will form via this method
of modelling. This justifies the terminology used in the present title, and will show how
to reach, on an abstract mathematical setting, a compatibility between theglobal and the
local approaches.

Applications are given in section 3. Some comments about the compactness of theG-
clusters with respect to the global symmetry group leaving invariant the Fourier transform
of the model are made at the end of section 2.

2. Canonical spaces associated withG-clusters

Let us present the general construction itself. By using the inversioni : En −→ En, ix =
−x, we obtain the groupG = G∪iG and theG-clusterC = G{v1, . . . , vl,−v1, . . . ,−vl} =
C ∪ iC = G{v1, . . . , vl}. There exists a setOC = {v1, . . . , vk} ⊂ C which does not contain
opposite vectors and such thatC = {v1, . . . , vk,−v1, . . . ,−vk}. Here the letterO is used
to denoteopposite, not for any ring of integers associated withC. For anyg ∈ G, the
following map

tg : OC −→ OC tg(v) =
{
gv if gv ∈ OC
−gv if gv 6∈ OC

(1)

is one-to-one sinceg(−v) = −gv for any v ∈ C.
Because of theR-irreducibility of the action ofG onEn, we havek > n, andOC contains

a basis ofEn since the subspace ofEn generated byOC is G-invariant. For two setsA, B,
we denote byBA the set of all functionsf : A −→ B. The relation(gϕ)(v) = ϕ(g−1v)

defines a linear representation ofG in the vector spaceS = {ϕ : C −→ R |ϕ(−v) = −ϕ(v)
for v ∈ C}. Since an odd functionϕ : C −→ R is well determined by its restriction toOC ,
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the spaceS can be identified with the spaceE = ROC , and

g : E −→ E (gϕ)(v) =
{
ϕ(g−1v) if g−1v ∈ OC
−ϕ(−g−1v) if g−1v 6∈ OC

(2)

is the representation ofG in E corresponding to the representation ofG in S.
The spaceE has a natural structure of ak-dimensional linear space sinceROC can be

identified withRk. Its Euclidean structure is given by

〈ϕ1, ϕ2〉 =
∑
v∈OC

ϕ1(v)ϕ2(v) (3)

and the representation ofG in E is an orthogonal representation

〈gϕ1, gϕ2〉 =
∑
v∈OC

(gϕ1)(v)(gϕ2)(v) =
∑
v∈OC

ϕ1(t
−1
g (v))ϕ2(t

−1
g (v))

=
∑
w∈OC

ϕ1(w)ϕ2(w) = 〈ϕ1, ϕ2〉. (4)

For all ϕ ∈ E , the norm ofϕ is given by‖ϕ‖ = √〈ϕ, ϕ〉.
Let us now introduce a canonical linear subspace ofE , playing the role of thephysical

space. It can be viewed as the dual space ofOC parametrized by a quotient space ofEn.
For all r ∈ En, let us defineϕr : OC −→ R : v 7→ 〈r, v〉, and

E‖ = {ϕr : OC −→ R, ϕr(v) = 〈r, v〉| r ∈ En}. (5)

In a complementary way, let us define the subspace

E⊥ =
{
ϕ : OC −→ R

∣∣∣∣ ∑
v∈OC

ϕ(v)v = 0

}
(6)

in E , which will play the role of internal space. These canonical subspaces have the
following properties: dimE‖ = n, dimE⊥ = k− n sinceOC contains a basis ofEn, E‖ and
E⊥ areG-invariant since, withg ∈ G, v ∈ OC , r ∈ En,

(gϕr)(v) = 〈r, g−1v〉 = 〈gr, v〉 = ϕgr(v) (7)∑
v∈OC

(gϕ)(v)v =
∑
w∈OC

ϕ(w)gw = g
( ∑
w∈OC

ϕ(w)w

)
(8)

and orthogonal because of the identity

〈ϕr, ϕ〉 =
∑
v∈OC
〈r, v〉ϕ(v) =

〈
r,
∑
v∈OC

ϕ(v)v

〉
. (9)

We obtain thatE = E‖ ⊕ E⊥. The corresponding orthogonal projectorsπ‖ : E −→ E ,
π⊥ : E −→ E satisfy the relationsπ‖ ◦ g = g ◦ π‖, π⊥ ◦ g = g ◦ π⊥, for any g ∈ G.
The relationgϕr = ϕgr shows that the representation ofG in E‖ is equivalent to the
representation ofG in En.

Let {e1, e2, . . . , en} be an orthonormal basis ofEn, and let ψj = ϕej . Denoting
gej =

∑n
p=1 gpj ep, we get

〈ψj ,ψm〉 =
∑
v∈OC
〈ej , v〉〈em, v〉 =

∑
v∈OC
〈ej , t−1

g (v)〉〈em, t−1
g (v)〉 =

∑
v∈OC
〈ej , g−1v〉〈em, g−1v〉

=
∑
v∈OC
〈gej , v〉〈gem, v〉 =

n∑
p=1

n∑
q=1

gpjgqm
∑
v∈OC
〈ep, v〉〈eq, v〉

=
n∑

p=1

n∑
q=1

gpj 〈ψp,ψq〉gqm (10)
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and then
n∑
j=1

gsj 〈ψj ,ψm〉 =
n∑

p=1

n∑
q=1

( n∑
j=1

gsjgpj

)
〈ψp,ψq〉gqm =

n∑
p=1

n∑
q=1

δsp〈ψp,ψq〉gqm

=
n∑
q=1

〈ψs,ψq〉gqm. (11)

Denoting byM the symmetrical real matrix(〈ψj ,ψm〉)j,m=1...n, andMg = (gjm)j,m=1...n the
matrix associated withg, the above computation impliesMgM = MMg, for any g ∈ G.
Applying Schur’s lemma [7], we obtainM = constant× Id, where the constant is real, and
the fact that{ψ1, ψ2, . . . , ψn} is an orthogonal basis with‖ψ1‖ = ‖ψ2‖ = · · · = ‖ψn‖ 6= 0.
The elementsφ1 = ψ1/κ, φ2 = ψ2/κ, . . ., φn = ψn/κ, where κ = ‖ψ1‖, form an
orthonormal basis ofE‖.

The projectorπ‖ : E −→ E‖ is given by the formula

(π‖ϕ)(v) = 1

κ2

∑
w∈OC

ϕ(w)〈w, v〉 (12)

for all ϕ ∈ E andv ∈ OC . Indeed, the relation∑
w∈OC

ϕ(w)〈w, v〉 =
〈 ∑
w∈OC

ϕ(w)w, v

〉
= 0 (13)

satisfied for allϕ ∈ E⊥ andv ∈ OC , shows that all elements ofE⊥ go to zero. Now, for
any r =∑n

j=1 rj ej ∈ En, and its correspondingϕr ∈ E‖, and for anyu =∑n
m=1 umem, we

have the following identity

1

κ2

∑
w∈OC

ϕr(w)〈w, u〉 = 1

κ2

∑
w∈OC
〈r, w〉〈w, u〉 =

n∑
j=1

n∑
m=1

rjum
1

κ2
〈ψj ,ψm〉

=
n∑
j=1

rjuj = 〈r, u〉 = ϕr(u) (14)

that is,(π‖ϕr)(u) = ϕr(u).
The isomorphismλ : En −→ E‖ : r 7→ ϕr/κ has the propertyλ(ej ) = φj , and allows us

to identify the two spaces. The additiveG-invariant groupL =⊕k
j=1Zvj , in other terms

aG-invariantZ-module of rankk, can be decomposed [11] into a direct sumL = Ls⊕Ld

such thatLs is a denseZ-module andLd is a discreteZ-module inEn. TheZ-moduleLs

is well determined and defines a linear subspaceV = Ls (adherence ofLs) in En, such that
Ls = V ∩ L. TheZ-moduleLd is non-unique in this decomposition. Since each element
g ∈ G is an isometry inEn, and each element ofV is the limit of a sequence of elements
belonging to theG-invariant Z-moduleL, it follows that each element ofg(V ) has the
same property, whenceg(V ) ⊂ V , for all g ∈ G. In view of the irreducibility of the
representation ofG in En, we obtain thatV = {0} or V = En, whenceL = Ld or L = Ls.

Obviously, we identifyL with λ(L), and one can prove thatL = π‖((κZ)OC ).
In the caseL = Ls, we can consider [12] that the pattern

G[v1, v2, . . . , vl ] = {π‖ϕ |ϕ ∈ (κZOC , π⊥ϕ ∈ π⊥([0, 1)OC )} (15)

is a model of a quasicrystal having the local structure described by theG-cluster
G{v1, v2, . . . , vl}, viewed as a global averageG-cluster [10]. For each pointx ∈
G[v1, v2, . . . , vl ] the ‘arithmetic neighbours’ ofx belong to the translationx + C of the
G-clusterC. Since each atom belongs to several such translations at the same time, the
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quasicrystal having the local structure described by theG-clusterC can be regarded as a
set of interpenetrating partially occupied translations ofC.

If L = Ld, thenG[v1, v2, . . . , vl ] is a model of the crystal.
One can remark that the isomorphism

E −→ Ek : ϕ 7→ (ϕ(v1), ϕ(v2), . . . , ϕ(vk)) (16)

allows us to identify the two spaces, and the method used to defineG[v1, v2, . . . , vl ] is
equivalent with the well known strip projection method. Indeed,E = E‖ ⊕E⊥ corresponds
to the decompositionEk = E‖k ⊕ E⊥k , where

E‖k = {(〈r, v1〉, 〈r, v2〉, . . . , 〈r, vk〉) | r ∈ En} (17)

E⊥k =
{
x = (x1, x2, . . . , xk)

∣∣∣∣ k∑
j=1

xjvj = 0

}
(18)

π‖ = 1

κ2


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vk〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vk〉
. . . . . . . . . . . .

〈vk, v1〉 〈v1, v1〉 . . . 〈vk, vk〉

 (19)

and

G[v1, v2, . . . , vl ] = {π‖x | x ∈ κZk π⊥x ∈ π⊥([0, 1)k)}. (20)

All the above results can be obtained directly in terms ofEk, but the mathematical
expressions are more complicated.

From the presented construction, it follows that

G[v1, v2, . . . , vl ] = G[v1, v2, . . . , vl ] (21)

with a true global symmetry of the model which could be higher thanG.
In a well known way [12], one can prove that the Fourier transform ofG[v1, v2, . . . , vl ]

is a sum of weighted Dirac delta peaks supported by an everywhere denseG-invariant
additive group, for which, in each compact set, there are finitely many points with an
absolute value of the amplitude above any given strictly positive threshold.

Actually, the finite symmetry group, sayH , leaving invariant the Fourier transform (the
origin in reciprocal space is a fixed point) may be different fromG and such that the index
(H : G) be finite. However, if we apply the present construction toH instead ofG, we
will work with clusters of atoms composed ofH -orbits and notG-orbits, that is much more
compact (compact in the sense of sphere packings compactness where atoms are modelled
by spheres) clusters of atoms locally. Therefore, if we start fromG-clusters that we consider
as very compact clusters, it will become impossible to get an index(H : G) different from
one. If, on the contrary, we consider the presentG-clusters just as a backbone which could
be decorated, meaning that we allow space between the points inG-orbits to position more
atomic sites, then we could get more elevated(H : G) indices. A bound for(H : G)
could be given depending upon the allowed‘remaining space’for decoration, that is as a
function of aminimal distance—the small Delaunay constant—viewed as the smallest atom
diameter. This provides a link between an intrinsic metric in real space associated with the
notion of size of the atoms (in dimensionn) and the various possibilities of supergroups
H leaving invariant the quasicrystal formed. Questions about the density of quasiperiodic
sphere packings are evoked in [21]. In the present work, we consider general clusters for
the mathematical constructions.

In dimension three, the icosahedral compact clusters of atoms are not arbitrary and have
already been classified by Tamura and Verger-Gaugry [13] for simple systems (Al-based,
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Ti-based,. . .) in Mackay or Bergman types. For covalent boron-based systems (Weygand
and Verger-Gaugry [14]), other icosahedral clusters composed of different sequences of
icosahedral orbits are stable and can be used for the present construction method. Some
quasicrystals also exhibit several types of typical generic clusters which coexist—these
clusters are currently described from the different cubic lattice types used in the common
six-dimensional description [1, 2]. In this contribution we allow only one genericG-cluster
as the basic ingredient in dimensionn.

3. Applications

Let us show how this general method applies in a certain number of concrete cases which
are well known to crystallographers used to periodic and non-periodic tilings. We will
consider the icosahedral, dihedral, tetrahedral groups; and continuous deformations ofG-
clusters allowing, for instance, limits to be taken of crystalline tilings to form quasiperiodic
tilings. The control of the continuous deformation of the microstructure of theG-clusters
seems reasonable since experimentally clusters in good approximant phases and related
quasicrystals are almost the same. The dihedral case will cover the decagonal, dodecagonal
and octogonal cases.

(a) TheY -quasicrystalY [(1, 0, τ )] obtained by using the representation inE3 of the
icosahedral groupY = 235= 〈aY , bY | a5

Y = b2
Y = (aY bY )3 = e〉 defined by

aY (x, y, z) = 1
2(x − τy + (τ − 1)z, τx + (τ − 1)y − z, (τ − 1)x + y + τz) (22)

bY (x, y, z) = (−x,−y, z) (23)

where τ = (1+ √5)/2, has as points the vertices of the well known three-dimensional
Penrose tiling.

(b) The quasicrystalsD5[(1, 0)] (respectivelyD8[(1, 0)], D12[(1, 0)]) corresponding to
the two-dimensional Penrose tiling (respectively octagonal, and dodecagonal tiling) can be
obtained by using the representations inE2 of the dihedral groupsDm = 〈aD, bD | amD =
b2
D = (aDbD)2 = e〉 defined by

aD(x, y) = (x cos 2π/m− y sin 2π/m, x sin 2π/m+ y cos 2π/m) (24)

bD(x, y) = (x,−y). (25)

More sophisticated quasicrystal models can be obtained as follows. In theY -quasicrystal

Y [(α/
√
τ + 2, 0, ατ/

√
τ + 2), (β/

√
3, β/
√

3, β/
√

3), (γ,0, 0)]

where 0< α < β < γ , each point has neighbours lying on three shells formed by
the vertices of a regular icosahedron, a regular dodecahedron, and an icosidodecahedron,
respectively.

Similarly, in the Y -quasicrystalY [(1, 0, τ ), (1/2, 0, τ/2)] each point has neighbours
lying in the vertices of two parallel regular icosahedra.

For α, β ∈ (0,∞),

D4[(α, β)] is a

{
D4-crystal if α/β ∈ Q
D4-quasicrystal ifα/β 6∈ Q.

(26)

TheD4-quasicrystalD4[(α, 0), (1/
√

2, 1/
√

2)], whereα ∈ (0,∞), studied by Duneau [15],
is called a skeleton.
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By using the representation inE3 of the complete cubic groupOh = m3m =
〈aO, bO | a4

O = b6
O = (aObO)2 = e〉 defined by

aO(x, y, z) = (y,−x, z) (27)

bO(x, y, z) = (−y,−z,−x) (28)

we obtain that

Oh[(1, 0, 0), (α,0, 0)] is a

{
Oh-crystal if α ∈ Q
Oh-quasicrystal ifα 6∈ Q.

(29)

This model allowed Wanget al [16] to describe the structure of the rapidly solidified
V6Ni16Si7 alloy.

The clustersG1{v1, v2, . . . , vl} andG2{w1, w2, . . . , wl′ }, whereG1, G2 are two finite
groups of orthogonal transformations ofEn, are called equal if they contain the same
points. In this case, the corresponding quasicrystals (crystals) coincide:G1[v1, v2, . . . , vl ] =
G2[w1, w2, . . . , wl′ ]. For example,

D8[(1, 0)] = D4[(1, 0), (1/
√

2, 1/
√

2)] (30)

Y [(1, 0, τ )] = T [(1, 0, τ )] (31)

where theT -quasicrystalT [(1, 0, τ )] is obtained by using the representation inE3 of the
tetrahedral groupT = 23= 〈aT , bT | a2

T = b3
T = (aT bT )3 = e〉 defined by

aT (x, y, z) = (−x,−y, z) (32)

bT (x, y, z) = (y, z, x). (33)

(c) A sequence ofG-clusters(G{v1j , . . . , vlj })∞j=1, such that each sequence(vmj )∞j=1 is
convergent, is called convergent. Its limit is theG-clusterG{limj→∞ v1j , . . . , limj→∞ vlj }.
A sequence ofG-crystals (G-quasicrystals)

(G[v1j , . . . , vlj ])
∞
j=1 (34)

is called convergent if the corresponding sequence ofG-clusters is convergent. The
corresponding limit is theG-crystal (G-quasicrystal)

G

[
lim
j→∞

v1j , . . . , lim
j→∞

vlj

]
. (35)

In this case, one can prove that

lim
j→∞

F(G[v1j , . . . , vlj ]) = F
(

lim
j→∞

G[v1j , . . . , vlj ]

)
. (36)

By using (24) and (25) we get

lim
j→∞

D4[(1+ 1/j, 0), ((1/
√

2, 1/
√

2)] = D8[(1, 0)] (37)

lim
j→∞

D4[(1, 0), (j
√

3/(2j + 1), j/(2j + 1))] = D12[(1, 0)] (38)

the dimensions of periodization spaces being four and six, respectively. Denoting

uj = (2τj , 0, 0) vj = (1, τj , 1+ τj ) wj = (−1, τj , 1+ τj )
u′j = (1+ τj , 1+ τj , 1+ τj ) v′j = (−1− τj , 1+ τj , 1+ τj ) w′j = (0, τj , 1+ 2τj )
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whereτj = fj+1/fj , f0 = f1 = 1, fj+1 = fj−1 + fj , and using (22), (23), (32) and (33)
one obtains

lim
j→∞

T [(1, 0, τj )] = Y [(1, 0, τ )] (39)

lim
j→∞

T [uj , vj , wj ] = Y [(2τ, 0, 0)] (40)

lim
j→∞

T [u′j , v
′
j , w

′
j ] = Y [(1+ τ, 1+ τ, 1+ τ)]. (41)

The corresponding dimensionsk of the spacesE used in the last three examples are 6, 15
and 10, respectively. In the case of theY -quasicrystalY [(1+τ, 1+τ, 1+τ)] the arithmetic
neighbours of a point are placed in the vertices of a regular dodecahedron, and it can be
used [17] as a model for the AlMnSi quasicrystal.

The continuous family ofD4-quasicrystals

D4[(1, 0), ((1− t)/
√

2+ t
√

3/2, (1− t)/
√

2+ t/2)] (42)

considered fort ∈ [0, 1], is a continuous deformation ofD8[(1, 0)] into D12[(1, 0)].

4. Concluding remarks

In order to obtain a mathematical model for modelling a quasicrystal, it is necessary to
first determine the corresponding symmetry groupG by examining its diffraction diagram
in reciprocal space [5]. Then it is necessary to choose aG-cluster describing the local
structure, for instance, from electron-density maps [18] or from HREM images [19]. If the
agreement of the obtained model with experimental data is not acceptable, it is necessary
to look for a more suitableG-cluster. The limits of the present method, as well as some of
the limits of Pleasants’s method, consist in the fairly high dimension of the representations
of G which are used. A convenient and efficient algorithm for the strip projection method,
applicable to any dimension, recently proposed by Vogg and Ryder [20], allows us to use
the present method in the case of quasicrystals having the local structure described by
G-clusters having many orbits.
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[11] Descombes D 1986Eléments de Th´eorie des Nombres(Paris: PUF)



A mathematical construction of n-dimensional quasicrystals 4291

[12] Katz A and Duneau M 1986J. Physique47 181–96
[13] Tamura N and Verger-Gaugry J-L 1993J. Non-Cryst. Solids153–154546–51
[14] Weygand D and Verger-Gaugry J-L 1995C. R. Acad. Sci., Paris320 Série IIb 253–7
[15] Duneau M 1991J. PhysiqueI 1 1591–601
[16] Wang, Qin C, Lu Gu, Feng Y and Xu S 1994Acta Crystallogr.A 50 366–75
[17] Cheng Y F and Gjønnes J 1994Acta Crystallogr.A 50 455–61
[18] Steurer Wet al 1994J. Phys.: Condens. Matter6 613
[19] Ritsch Set al 1995Proc. 5th Int. Conf. Quasicrystals (Avignon, 22–26 May 1995)ed C Janot and R Mosseri

(Singapore: World Scientific) pp 216–19
[20] Vogg U and Ryder P L 1996J. Non-Cryst. Solids194 135–44
[21] Verger-Gaugry J-L 1997Periodica Mathematica Hungaricaaccepted for publication


